2,289 research outputs found

    Accumulation horizons and period-adding in optically injected semiconductor lasers

    Get PDF
    We study the hierarchical structuring of islands of stable periodic oscillations inside chaotic regions in phase diagrams of single-mode semiconductor lasers with optical injection. Phase diagrams display remarkable {\it accumulation horizons}: boundaries formed by the accumulation of infinite cascades of self-similar islands of periodic solutions of ever-increasing period. Each cascade follows a specific period-adding route. The riddling of chaotic laser phases by such networks of periodic solutions may compromise applications operating with chaotic signals such as e.g. secure communications.Comment: 4 pages, 4 figures, laser phase diagrams, to appear in Phys. Rev. E, vol. 7

    A good review of our understanding of speciation

    Full text link

    How can ten fingers shape a pot? Evidence for equivalent function in culturally distinct motor skills

    Get PDF
    Behavioural variability is likely to emerge when a particular task is performed in different cultural settings, assuming that part of human motor behaviour is influenced by culture. In analysing motor behaviour it is useful to distinguish how the action is performed from the result achieved. Does cultural environment lead to specific cultural motor skills? Are there differences between cultures both in the skills themselves and in the corresponding outcomes? Here we analyse the skill of pottery wheel-throwing in French and Indian cultural environments. Our specific goal was to examine the ability of expert potters from distinct cultural settings to reproduce a common model shape (a sphere). The operational aspects of motor performance were captured through the analysis of the hand positions used by the potters during the fashioning process. In parallel, the outcomes were captured by the geometrical characteristics of the vessels produced. As expected, results revealed a cultural influence on the operational aspects of the potters' motor skill. Yet, the marked cultural differences in hand positions used did not give rise to noticeable differences in the shapes of the vessels produced. Hence, for the simple model form studied, the culturally-specific motor traditions of the French and Indian potters gave rise to an equivalent outcome, that is shape uniformity. Further work is needed to test whether such equivalence is also observed in more complex ceramic shapes

    Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin.

    Get PDF
    Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by similar to 90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.open118380Ysciescopu

    Analysis of the temperature influence on Langmuir probe measurements on the basis of gyrofluid simulations

    Full text link
    The influence of the temperature and its fluctuations on the ion saturation current and the floating potential, which are typical quantities measured by Langmuir probes in the turbulent edge region of fusion plasmas, is analysed by global nonlinear gyrofluid simulations for two exemplary parameter regimes. The numerical simulation facilitates a direct access to densities, temperatures and the plasma potential at different radial positions around the separatrix. This allows a comparison between raw data and the calculated ion saturation current and floating potential within the simulation. Calculations of the fluctuation-induced radial particle flux and its statistical properties reveal significant differences to the actual values at all radial positions of the simulation domain, if the floating potential and the temperature averaged density inferred from the ion saturation current is used.Comment: Submitted to Plasma Physics and Controlled Fusio

    Drift versus selection as drivers of phenotypic divergence at small spatial scales: The case of Belgjarskógur threespine stickleback

    Get PDF
    Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi‐interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.ISSN:2045-775

    Convergent evolution of sexual deception via chromatic and achromatic contrast rather than colour mimicry

    Get PDF
    The Orchidaceae is characterised by the repeated evolution of sexual deception, one of the most specialised pollination strategies. In orchids, sexual deception involves long-range pollinator attraction via mimicry of female insect sex pheromones. At close range, visual signals involving colour mimicry, contrast to the background, and exploitation of pollinator sensory biases could attract pollinators, but remain largely untested. Here we focus on a remarkable system in which species from two only distantly related sexually deceptive orchid genera with strikingly different flowers (Drakaea livida and three species of Caladenia) share the same pollinator, males of the thynnine wasp Zaspilothynnus nigripes. We used spectral reflectance measurements and modelling to investigate pollinator perception of colour, including the first examination of overall colour patterns in flowers via colour pattern geometry analyses. Rather than closely matching the colours of female Z. nigripes, these orchids had strong chromatic and achromatic contrast against their backgrounds. For Caladenia, the sepals and petals show high contrast, while in D. livida, which has diminutive petals and sepals, it is the labellum that contrasts strongly against the background. Despite varying in colour, the Caladenia species all had strong within-flower contrast between a UV-bright central target (column and labellum) and a corolla of radiating stripes (petals and sepals). The colour pattern geometry analyses also indicated that the orchids’ overall colour patterns are highly conspicuous against their backgrounds. Contrast, UV, and target patterns could all enhance detection, and exploit pollinators’ innate preferences. Since colour contrast may function with a range of colours and floral forms, attracting pollinators via contrast rather than visual mimicry may be a critical but previously overlooked process facilitating the evolution of sexual deception.Funding for fieldwork and equipment was from a University of Auckland FRDF Grant to ACG and an Australian Orchid Foundation Grant to RDP. The project was completed while RDP was supported by an ARC Linkage Grant (LP110100408) to Rod Peakall, Kingsley Dixon and Celeste Linde and a Discovery Early Career Research Award (DE150101720) and ACG was supported by University of Auckland sabbatical and parental leave funding
    corecore